This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of Theorem 19.21 of Margaris p. 90, see 19.21 . (Contributed by NM, 27-May-1997) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 3-Jan-2018) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) (Proof shortened by BJ, 3-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.21t | |- ( F/ x ph -> ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.38a | |- ( F/ x ph -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) ) |
|
| 2 | 19.9t | |- ( F/ x ph -> ( E. x ph <-> ph ) ) |
|
| 3 | 2 | imbi1d | |- ( F/ x ph -> ( ( E. x ph -> A. x ps ) <-> ( ph -> A. x ps ) ) ) |
| 4 | 1 3 | bitr3d | |- ( F/ x ph -> ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) ) ) |