This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for satfvsuc . (Contributed by AV, 8-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfv0.s | |- S = ( M Sat E ) |
|
| Assertion | satfvsuclem1 | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> { <. x , y >. | ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ y e. ~P ( M ^m _om ) ) } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv0.s | |- S = ( M Sat E ) |
|
| 2 | ancom | |- ( ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ y e. ~P ( M ^m _om ) ) <-> ( y e. ~P ( M ^m _om ) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
|
| 3 | 2 | opabbii | |- { <. x , y >. | ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ y e. ~P ( M ^m _om ) ) } = { <. x , y >. | ( y e. ~P ( M ^m _om ) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) } |
| 4 | ovex | |- ( M ^m _om ) e. _V |
|
| 5 | 4 | pwex | |- ~P ( M ^m _om ) e. _V |
| 6 | 5 | a1i | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ~P ( M ^m _om ) e. _V ) |
| 7 | fvex | |- ( S ` N ) e. _V |
|
| 8 | unab | |- ( { x | E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) } u. { x | E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) } ) = { x | ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
|
| 9 | 7 | abrexex | |- { x | E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) } e. _V |
| 10 | simpl | |- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
|
| 11 | 10 | reximi | |- ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 12 | 11 | ss2abi | |- { x | E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) } C_ { x | E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) } |
| 13 | 9 12 | ssexi | |- { x | E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) } e. _V |
| 14 | omex | |- _om e. _V |
|
| 15 | 14 | abrexex | |- { x | E. i e. _om x = A.g i ( 1st ` u ) } e. _V |
| 16 | simpl | |- ( ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> x = A.g i ( 1st ` u ) ) |
|
| 17 | 16 | reximi | |- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> E. i e. _om x = A.g i ( 1st ` u ) ) |
| 18 | 17 | ss2abi | |- { x | E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) } C_ { x | E. i e. _om x = A.g i ( 1st ` u ) } |
| 19 | 15 18 | ssexi | |- { x | E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) } e. _V |
| 20 | 13 19 | unex | |- ( { x | E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) } u. { x | E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) } ) e. _V |
| 21 | 8 20 | eqeltrri | |- { x | ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } e. _V |
| 22 | 21 | a1i | |- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ y e. ~P ( M ^m _om ) ) /\ u e. ( S ` N ) ) -> { x | ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } e. _V ) |
| 23 | 22 | ralrimiva | |- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ y e. ~P ( M ^m _om ) ) -> A. u e. ( S ` N ) { x | ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } e. _V ) |
| 24 | abrexex2g | |- ( ( ( S ` N ) e. _V /\ A. u e. ( S ` N ) { x | ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } e. _V ) -> { x | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } e. _V ) |
|
| 25 | 7 23 24 | sylancr | |- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ y e. ~P ( M ^m _om ) ) -> { x | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } e. _V ) |
| 26 | 6 25 | opabex3rd | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> { <. x , y >. | ( y e. ~P ( M ^m _om ) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) } e. _V ) |
| 27 | 3 26 | eqeltrid | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> { <. x , y >. | ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ y e. ~P ( M ^m _om ) ) } e. _V ) |