This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfsschain.s | |- S = ( M Sat E ) |
|
| Assertion | satfsschain | |- ( ( ( M e. V /\ E e. W ) /\ ( A e. _om /\ B e. _om ) ) -> ( B C_ A -> ( S ` B ) C_ ( S ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfsschain.s | |- S = ( M Sat E ) |
|
| 2 | fveq2 | |- ( b = B -> ( S ` b ) = ( S ` B ) ) |
|
| 3 | 2 | sseq2d | |- ( b = B -> ( ( S ` B ) C_ ( S ` b ) <-> ( S ` B ) C_ ( S ` B ) ) ) |
| 4 | 3 | imbi2d | |- ( b = B -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` b ) ) <-> ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` B ) ) ) ) |
| 5 | fveq2 | |- ( b = a -> ( S ` b ) = ( S ` a ) ) |
|
| 6 | 5 | sseq2d | |- ( b = a -> ( ( S ` B ) C_ ( S ` b ) <-> ( S ` B ) C_ ( S ` a ) ) ) |
| 7 | 6 | imbi2d | |- ( b = a -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` b ) ) <-> ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` a ) ) ) ) |
| 8 | fveq2 | |- ( b = suc a -> ( S ` b ) = ( S ` suc a ) ) |
|
| 9 | 8 | sseq2d | |- ( b = suc a -> ( ( S ` B ) C_ ( S ` b ) <-> ( S ` B ) C_ ( S ` suc a ) ) ) |
| 10 | 9 | imbi2d | |- ( b = suc a -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` b ) ) <-> ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` suc a ) ) ) ) |
| 11 | fveq2 | |- ( b = A -> ( S ` b ) = ( S ` A ) ) |
|
| 12 | 11 | sseq2d | |- ( b = A -> ( ( S ` B ) C_ ( S ` b ) <-> ( S ` B ) C_ ( S ` A ) ) ) |
| 13 | 12 | imbi2d | |- ( b = A -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` b ) ) <-> ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` A ) ) ) ) |
| 14 | ssidd | |- ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` B ) ) |
|
| 15 | 14 | a1i | |- ( B e. _om -> ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` B ) ) ) |
| 16 | pm2.27 | |- ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` a ) ) -> ( S ` B ) C_ ( S ` a ) ) ) |
|
| 17 | 16 | adantl | |- ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` a ) ) -> ( S ` B ) C_ ( S ` a ) ) ) |
| 18 | simpr | |- ( ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) /\ ( S ` B ) C_ ( S ` a ) ) -> ( S ` B ) C_ ( S ` a ) ) |
|
| 19 | ssun1 | |- ( S ` a ) C_ ( ( S ` a ) u. { <. x , y >. | E. u e. ( S ` a ) ( E. v e. ( S ` a ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { z e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( z |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
|
| 20 | simpl | |- ( ( M e. V /\ E e. W ) -> M e. V ) |
|
| 21 | simpr | |- ( ( M e. V /\ E e. W ) -> E e. W ) |
|
| 22 | simplll | |- ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) -> a e. _om ) |
|
| 23 | 1 | satfvsuc | |- ( ( M e. V /\ E e. W /\ a e. _om ) -> ( S ` suc a ) = ( ( S ` a ) u. { <. x , y >. | E. u e. ( S ` a ) ( E. v e. ( S ` a ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { z e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( z |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 24 | 20 21 22 23 | syl2an23an | |- ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) -> ( S ` suc a ) = ( ( S ` a ) u. { <. x , y >. | E. u e. ( S ` a ) ( E. v e. ( S ` a ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { z e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( z |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 25 | 19 24 | sseqtrrid | |- ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) -> ( S ` a ) C_ ( S ` suc a ) ) |
| 26 | 25 | adantr | |- ( ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) /\ ( S ` B ) C_ ( S ` a ) ) -> ( S ` a ) C_ ( S ` suc a ) ) |
| 27 | 18 26 | sstrd | |- ( ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) /\ ( S ` B ) C_ ( S ` a ) ) -> ( S ` B ) C_ ( S ` suc a ) ) |
| 28 | 27 | ex | |- ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) -> ( ( S ` B ) C_ ( S ` a ) -> ( S ` B ) C_ ( S ` suc a ) ) ) |
| 29 | 17 28 | syld | |- ( ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) /\ ( M e. V /\ E e. W ) ) -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` a ) ) -> ( S ` B ) C_ ( S ` suc a ) ) ) |
| 30 | 29 | ex | |- ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) -> ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` a ) ) -> ( S ` B ) C_ ( S ` suc a ) ) ) ) |
| 31 | 30 | com23 | |- ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) -> ( ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` a ) ) -> ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` suc a ) ) ) ) |
| 32 | 4 7 10 13 15 31 | findsg | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` A ) ) ) |
| 33 | 32 | ex | |- ( ( A e. _om /\ B e. _om ) -> ( B C_ A -> ( ( M e. V /\ E e. W ) -> ( S ` B ) C_ ( S ` A ) ) ) ) |
| 34 | 33 | com23 | |- ( ( A e. _om /\ B e. _om ) -> ( ( M e. V /\ E e. W ) -> ( B C_ A -> ( S ` B ) C_ ( S ` A ) ) ) ) |
| 35 | 34 | impcom | |- ( ( ( M e. V /\ E e. W ) /\ ( A e. _om /\ B e. _om ) ) -> ( B C_ A -> ( S ` B ) C_ ( S ` A ) ) ) |