This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the value of the satisfaction predicate as function over wff codes in the model M and the binary relation E on M at the code U for a wff using e. , -/\ , A. is a valuation S :om --> M of the variables (v0 = ( S(/) ) , v_1 = ( S1o ) , etc.) so that U is true under the assignment S . (Contributed by AV, 29-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfvel | |- ( ( ( M e. V /\ E e. W ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat E ) ` _om ) ` U ) ) -> S : _om --> M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfun | |- ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) ) |
|
| 2 | ffvelcdm | |- ( ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) /\ U e. ( Fmla ` _om ) ) -> ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) ) |
|
| 3 | fvex | |- ( ( ( M Sat E ) ` _om ) ` U ) e. _V |
|
| 4 | 3 | elpw | |- ( ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) <-> ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) ) |
| 5 | ssel | |- ( ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S e. ( M ^m _om ) ) ) |
|
| 6 | elmapi | |- ( S e. ( M ^m _om ) -> S : _om --> M ) |
|
| 7 | 5 6 | syl6 | |- ( ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) |
| 8 | 4 7 | sylbi | |- ( ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) |
| 9 | 2 8 | syl | |- ( ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) /\ U e. ( Fmla ` _om ) ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) |
| 10 | 9 | ex | |- ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) -> ( U e. ( Fmla ` _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) ) |
| 11 | 1 10 | syl | |- ( ( M e. V /\ E e. W ) -> ( U e. ( Fmla ` _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) ) |
| 12 | 11 | 3imp | |- ( ( ( M e. V /\ E e. W ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat E ) ` _om ) ` U ) ) -> S : _om --> M ) |