This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s4dom | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( E = <" A B C D "> -> dom E = ( { 0 , 1 } u. { 2 , 3 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq | |- ( E = <" A B C D "> -> dom E = dom <" A B C D "> ) |
|
| 2 | s4prop | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C D "> = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
|
| 3 | 2 | dmeqd | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> dom <" A B C D "> = dom ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
| 4 | dmun | |- dom ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) = ( dom { <. 0 , A >. , <. 1 , B >. } u. dom { <. 2 , C >. , <. 3 , D >. } ) |
|
| 5 | dmpropg | |- ( ( A e. S /\ B e. S ) -> dom { <. 0 , A >. , <. 1 , B >. } = { 0 , 1 } ) |
|
| 6 | 5 | adantr | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> dom { <. 0 , A >. , <. 1 , B >. } = { 0 , 1 } ) |
| 7 | dmpropg | |- ( ( C e. S /\ D e. S ) -> dom { <. 2 , C >. , <. 3 , D >. } = { 2 , 3 } ) |
|
| 8 | 7 | adantl | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> dom { <. 2 , C >. , <. 3 , D >. } = { 2 , 3 } ) |
| 9 | 6 8 | uneq12d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( dom { <. 0 , A >. , <. 1 , B >. } u. dom { <. 2 , C >. , <. 3 , D >. } ) = ( { 0 , 1 } u. { 2 , 3 } ) ) |
| 10 | 4 9 | eqtrid | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> dom ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) = ( { 0 , 1 } u. { 2 , 3 } ) ) |
| 11 | 3 10 | eqtrd | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> dom <" A B C D "> = ( { 0 , 1 } u. { 2 , 3 } ) ) |
| 12 | 1 11 | sylan9eqr | |- ( ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) /\ E = <" A B C D "> ) -> dom E = ( { 0 , 1 } u. { 2 , 3 } ) ) |
| 13 | 12 | ex | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( E = <" A B C D "> -> dom E = ( { 0 , 1 } u. { 2 , 3 } ) ) ) |