This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A length 4 word is a union of two unordered pairs of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s4prop | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C D "> = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s4 | |- <" A B C D "> = ( <" A B C "> ++ <" D "> ) |
|
| 2 | simpl | |- ( ( A e. S /\ B e. S ) -> A e. S ) |
|
| 3 | 2 | adantr | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> A e. S ) |
| 4 | simpr | |- ( ( A e. S /\ B e. S ) -> B e. S ) |
|
| 5 | 4 | adantr | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> B e. S ) |
| 6 | simpl | |- ( ( C e. S /\ D e. S ) -> C e. S ) |
|
| 7 | 6 | adantl | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> C e. S ) |
| 8 | 3 5 7 | s3cld | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> e. Word S ) |
| 9 | simpr | |- ( ( C e. S /\ D e. S ) -> D e. S ) |
|
| 10 | 9 | adantl | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> D e. S ) |
| 11 | cats1un | |- ( ( <" A B C "> e. Word S /\ D e. S ) -> ( <" A B C "> ++ <" D "> ) = ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
| 13 | df-s3 | |- <" A B C "> = ( <" A B "> ++ <" C "> ) |
|
| 14 | s2cl | |- ( ( A e. S /\ B e. S ) -> <" A B "> e. Word S ) |
|
| 15 | 14 | adantr | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B "> e. Word S ) |
| 16 | cats1un | |- ( ( <" A B "> e. Word S /\ C e. S ) -> ( <" A B "> ++ <" C "> ) = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
|
| 17 | 15 7 16 | syl2anc | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B "> ++ <" C "> ) = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 18 | 13 17 | eqtrid | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 19 | s2prop | |- ( ( A e. S /\ B e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
|
| 20 | 19 | adantr | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
| 21 | 20 | uneq1d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 22 | 18 21 | eqtrd | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> = ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 23 | 22 | uneq1d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) = ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
| 24 | 12 23 | eqtrd | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
| 25 | unass | |- ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
|
| 26 | 25 | a1i | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) ) |
| 27 | df-pr | |- { <. ( # ` <" A B "> ) , C >. , <. ( # ` <" A B C "> ) , D >. } = ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) |
|
| 28 | s2len | |- ( # ` <" A B "> ) = 2 |
|
| 29 | 28 | a1i | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( # ` <" A B "> ) = 2 ) |
| 30 | 29 | opeq1d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <. ( # ` <" A B "> ) , C >. = <. 2 , C >. ) |
| 31 | s3len | |- ( # ` <" A B C "> ) = 3 |
|
| 32 | 31 | a1i | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( # ` <" A B C "> ) = 3 ) |
| 33 | 32 | opeq1d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <. ( # ` <" A B C "> ) , D >. = <. 3 , D >. ) |
| 34 | 30 33 | preq12d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> { <. ( # ` <" A B "> ) , C >. , <. ( # ` <" A B C "> ) , D >. } = { <. 2 , C >. , <. 3 , D >. } ) |
| 35 | 27 34 | eqtr3id | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) = { <. 2 , C >. , <. 3 , D >. } ) |
| 36 | 35 | uneq2d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
| 37 | 24 26 36 | 3eqtrd | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
| 38 | 1 37 | eqtrid | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C D "> = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |