This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping a doubleton word by a function. (Contributed by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | s2co.1 | |- ( ph -> F : X --> Y ) |
|
| s2co.2 | |- ( ph -> A e. X ) |
||
| s2co.3 | |- ( ph -> B e. X ) |
||
| Assertion | s2co | |- ( ph -> ( F o. <" A B "> ) = <" ( F ` A ) ( F ` B ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2co.1 | |- ( ph -> F : X --> Y ) |
|
| 2 | s2co.2 | |- ( ph -> A e. X ) |
|
| 3 | s2co.3 | |- ( ph -> B e. X ) |
|
| 4 | df-s2 | |- <" A B "> = ( <" A "> ++ <" B "> ) |
|
| 5 | 2 | s1cld | |- ( ph -> <" A "> e. Word X ) |
| 6 | s1co | |- ( ( A e. X /\ F : X --> Y ) -> ( F o. <" A "> ) = <" ( F ` A ) "> ) |
|
| 7 | 2 1 6 | syl2anc | |- ( ph -> ( F o. <" A "> ) = <" ( F ` A ) "> ) |
| 8 | df-s2 | |- <" ( F ` A ) ( F ` B ) "> = ( <" ( F ` A ) "> ++ <" ( F ` B ) "> ) |
|
| 9 | 4 5 3 1 7 8 | cats1co | |- ( ph -> ( F o. <" A B "> ) = <" ( F ` A ) ( F ` B ) "> ) |