This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghomsub.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| rnghomsub.2 | ⊢ 𝑋 = ran 𝐺 | ||
| rnghomsub.3 | ⊢ 𝐻 = ( /𝑔 ‘ 𝐺 ) | ||
| rnghomsub.4 | ⊢ 𝐽 = ( 1st ‘ 𝑆 ) | ||
| rnghomsub.5 | ⊢ 𝐾 = ( /𝑔 ‘ 𝐽 ) | ||
| Assertion | rngohomsub | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) 𝐾 ( 𝐹 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghomsub.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | rnghomsub.2 | ⊢ 𝑋 = ran 𝐺 | |
| 3 | rnghomsub.3 | ⊢ 𝐻 = ( /𝑔 ‘ 𝐺 ) | |
| 4 | rnghomsub.4 | ⊢ 𝐽 = ( 1st ‘ 𝑆 ) | |
| 5 | rnghomsub.5 | ⊢ 𝐾 = ( /𝑔 ‘ 𝐽 ) | |
| 6 | 1 | rngogrpo | ⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → 𝐺 ∈ GrpOp ) |
| 8 | 4 | rngogrpo | ⊢ ( 𝑆 ∈ RingOps → 𝐽 ∈ GrpOp ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → 𝐽 ∈ GrpOp ) |
| 10 | 1 4 | rngogrphom | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → 𝐹 ∈ ( 𝐺 GrpOpHom 𝐽 ) ) |
| 11 | 7 9 10 | 3jca | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → ( 𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐽 ) ) ) |
| 12 | 2 3 5 | ghomdiv | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐽 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) 𝐾 ( 𝐹 ‘ 𝐵 ) ) ) |
| 13 | 11 12 | sylan | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) 𝐾 ( 𝐹 ‘ 𝐵 ) ) ) |