This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007) (Proof shortened by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | |- G = ( 1st ` R ) |
|
| ringi.2 | |- H = ( 2nd ` R ) |
||
| ringi.3 | |- X = ran G |
||
| Assertion | rngoi | |- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | |- G = ( 1st ` R ) |
|
| 2 | ringi.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringi.3 | |- X = ran G |
|
| 4 | 1 2 | opeq12i | |- <. G , H >. = <. ( 1st ` R ) , ( 2nd ` R ) >. |
| 5 | relrngo | |- Rel RingOps |
|
| 6 | 1st2nd | |- ( ( Rel RingOps /\ R e. RingOps ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
|
| 7 | 5 6 | mpan | |- ( R e. RingOps -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 8 | 4 7 | eqtr4id | |- ( R e. RingOps -> <. G , H >. = R ) |
| 9 | id | |- ( R e. RingOps -> R e. RingOps ) |
|
| 10 | 8 9 | eqeltrd | |- ( R e. RingOps -> <. G , H >. e. RingOps ) |
| 11 | 2 | fvexi | |- H e. _V |
| 12 | 3 | isrngo | |- ( H e. _V -> ( <. G , H >. e. RingOps <-> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) ) |
| 13 | 11 12 | ax-mp | |- ( <. G , H >. e. RingOps <-> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 14 | 10 13 | sylib | |- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |