This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Rings
Homomorphisms of non-unital rings
rngisomfv1
Metamath Proof Explorer
Description: If there is a non-unital ring isomorphism between a unital ring and a
non-unital ring, then the function value of the ring unity of the unital
ring is an element of the base set of the non-unital ring. (Contributed by AV , 27-Feb-2025)
Ref
Expression
Hypotheses
rngisom1.1
⊢ 1 ˙ = 1 R
rngisom1.b
⊢ B = Base S
Assertion
rngisomfv1
⊢ R ∈ Ring ∧ F ∈ R RngIso S → F ⁡ 1 ˙ ∈ B
Proof
Step
Hyp
Ref
Expression
1
rngisom1.1
⊢ 1 ˙ = 1 R
2
rngisom1.b
⊢ B = Base S
3
eqid
⊢ Base R = Base R
4
3 2
rngimf1o
⊢ F ∈ R RngIso S → F : Base R ⟶ 1-1 onto B
5
f1of
⊢ F : Base R ⟶ 1-1 onto B → F : Base R ⟶ B
6
4 5
syl
⊢ F ∈ R RngIso S → F : Base R ⟶ B
7
6
adantl
⊢ R ∈ Ring ∧ F ∈ R RngIso S → F : Base R ⟶ B
8
3 1
ringidcl
⊢ R ∈ Ring → 1 ˙ ∈ Base R
9
8
adantr
⊢ R ∈ Ring ∧ F ∈ R RngIso S → 1 ˙ ∈ Base R
10
7 9
ffvelcdmd
⊢ R ∈ Ring ∧ F ∈ R RngIso S → F ⁡ 1 ˙ ∈ B