This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnghmval2 | |- ( ( R e. Rng /\ S e. Rng ) -> ( R RngHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 2 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 3 | 1 2 | isrnghmmul | |- ( h e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
| 4 | elin | |- ( h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) <-> ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) |
|
| 5 | ibar | |- ( ( R e. Rng /\ S e. Rng ) -> ( ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) ) |
|
| 6 | 4 5 | bitr2id | |- ( ( R e. Rng /\ S e. Rng ) -> ( ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) <-> h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
| 7 | 3 6 | bitrid | |- ( ( R e. Rng /\ S e. Rng ) -> ( h e. ( R RngHom S ) <-> h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
| 8 | 7 | eqrdv | |- ( ( R e. Rng /\ S e. Rng ) -> ( R RngHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) |