This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isrngim | |- ( ( R e. V /\ S e. W ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rngim | |- RngIso = ( r e. _V , s e. _V |-> { f e. ( r RngHom s ) | `' f e. ( s RngHom r ) } ) |
|
| 2 | 1 | a1i | |- ( ( R e. V /\ S e. W ) -> RngIso = ( r e. _V , s e. _V |-> { f e. ( r RngHom s ) | `' f e. ( s RngHom r ) } ) ) |
| 3 | oveq12 | |- ( ( r = R /\ s = S ) -> ( r RngHom s ) = ( R RngHom S ) ) |
|
| 4 | 3 | adantl | |- ( ( ( R e. V /\ S e. W ) /\ ( r = R /\ s = S ) ) -> ( r RngHom s ) = ( R RngHom S ) ) |
| 5 | oveq12 | |- ( ( s = S /\ r = R ) -> ( s RngHom r ) = ( S RngHom R ) ) |
|
| 6 | 5 | ancoms | |- ( ( r = R /\ s = S ) -> ( s RngHom r ) = ( S RngHom R ) ) |
| 7 | 6 | adantl | |- ( ( ( R e. V /\ S e. W ) /\ ( r = R /\ s = S ) ) -> ( s RngHom r ) = ( S RngHom R ) ) |
| 8 | 7 | eleq2d | |- ( ( ( R e. V /\ S e. W ) /\ ( r = R /\ s = S ) ) -> ( `' f e. ( s RngHom r ) <-> `' f e. ( S RngHom R ) ) ) |
| 9 | 4 8 | rabeqbidv | |- ( ( ( R e. V /\ S e. W ) /\ ( r = R /\ s = S ) ) -> { f e. ( r RngHom s ) | `' f e. ( s RngHom r ) } = { f e. ( R RngHom S ) | `' f e. ( S RngHom R ) } ) |
| 10 | elex | |- ( R e. V -> R e. _V ) |
|
| 11 | 10 | adantr | |- ( ( R e. V /\ S e. W ) -> R e. _V ) |
| 12 | elex | |- ( S e. W -> S e. _V ) |
|
| 13 | 12 | adantl | |- ( ( R e. V /\ S e. W ) -> S e. _V ) |
| 14 | ovex | |- ( R RngHom S ) e. _V |
|
| 15 | 14 | rabex | |- { f e. ( R RngHom S ) | `' f e. ( S RngHom R ) } e. _V |
| 16 | 15 | a1i | |- ( ( R e. V /\ S e. W ) -> { f e. ( R RngHom S ) | `' f e. ( S RngHom R ) } e. _V ) |
| 17 | 2 9 11 13 16 | ovmpod | |- ( ( R e. V /\ S e. W ) -> ( R RngIso S ) = { f e. ( R RngHom S ) | `' f e. ( S RngHom R ) } ) |
| 18 | 17 | eleq2d | |- ( ( R e. V /\ S e. W ) -> ( F e. ( R RngIso S ) <-> F e. { f e. ( R RngHom S ) | `' f e. ( S RngHom R ) } ) ) |
| 19 | cnveq | |- ( f = F -> `' f = `' F ) |
|
| 20 | 19 | eleq1d | |- ( f = F -> ( `' f e. ( S RngHom R ) <-> `' F e. ( S RngHom R ) ) ) |
| 21 | 20 | elrab | |- ( F e. { f e. ( R RngHom S ) | `' f e. ( S RngHom R ) } <-> ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) ) |
| 22 | 18 21 | bitrdi | |- ( ( R e. V /\ S e. W ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) ) ) |