This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnghmval2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 3 | 1 2 | isrnghmmul | ⊢ ( ℎ ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 4 | elin | ⊢ ( ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) | |
| 5 | ibar | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) ) | |
| 6 | 4 5 | bitr2id | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ↔ ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 7 | 3 6 | bitrid | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ℎ ∈ ( 𝑅 RngHom 𝑆 ) ↔ ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 8 | 7 | eqrdv | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) |