This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for rnghmsubcsetc . (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghmsubcsetc.c | |- C = ( ExtStrCat ` U ) |
|
| rnghmsubcsetc.u | |- ( ph -> U e. V ) |
||
| rnghmsubcsetc.b | |- ( ph -> B = ( Rng i^i U ) ) |
||
| rnghmsubcsetc.h | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
||
| Assertion | rnghmsubcsetclem1 | |- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsubcsetc.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | rnghmsubcsetc.u | |- ( ph -> U e. V ) |
|
| 3 | rnghmsubcsetc.b | |- ( ph -> B = ( Rng i^i U ) ) |
|
| 4 | rnghmsubcsetc.h | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
|
| 5 | 3 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( Rng i^i U ) ) ) |
| 6 | elin | |- ( x e. ( Rng i^i U ) <-> ( x e. Rng /\ x e. U ) ) |
|
| 7 | 6 | simplbi | |- ( x e. ( Rng i^i U ) -> x e. Rng ) |
| 8 | 5 7 | biimtrdi | |- ( ph -> ( x e. B -> x e. Rng ) ) |
| 9 | 8 | imp | |- ( ( ph /\ x e. B ) -> x e. Rng ) |
| 10 | eqid | |- ( Base ` x ) = ( Base ` x ) |
|
| 11 | 10 | idrnghm | |- ( x e. Rng -> ( _I |` ( Base ` x ) ) e. ( x RngHom x ) ) |
| 12 | 9 11 | syl | |- ( ( ph /\ x e. B ) -> ( _I |` ( Base ` x ) ) e. ( x RngHom x ) ) |
| 13 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 14 | 2 | adantr | |- ( ( ph /\ x e. B ) -> U e. V ) |
| 15 | 6 | simprbi | |- ( x e. ( Rng i^i U ) -> x e. U ) |
| 16 | 5 15 | biimtrdi | |- ( ph -> ( x e. B -> x e. U ) ) |
| 17 | 16 | imp | |- ( ( ph /\ x e. B ) -> x e. U ) |
| 18 | 1 13 14 17 | estrcid | |- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) = ( _I |` ( Base ` x ) ) ) |
| 19 | 4 | oveqdr | |- ( ( ph /\ x e. B ) -> ( x H x ) = ( x ( RngHom |` ( B X. B ) ) x ) ) |
| 20 | eqid | |- ( RngCat ` U ) = ( RngCat ` U ) |
|
| 21 | eqid | |- ( Base ` ( RngCat ` U ) ) = ( Base ` ( RngCat ` U ) ) |
|
| 22 | eqid | |- ( Hom ` ( RngCat ` U ) ) = ( Hom ` ( RngCat ` U ) ) |
|
| 23 | 20 21 2 22 | rngchomfval | |- ( ph -> ( Hom ` ( RngCat ` U ) ) = ( RngHom |` ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) ) ) |
| 24 | 20 21 2 | rngcbas | |- ( ph -> ( Base ` ( RngCat ` U ) ) = ( U i^i Rng ) ) |
| 25 | incom | |- ( Rng i^i U ) = ( U i^i Rng ) |
|
| 26 | 3 25 | eqtrdi | |- ( ph -> B = ( U i^i Rng ) ) |
| 27 | 26 | eqcomd | |- ( ph -> ( U i^i Rng ) = B ) |
| 28 | 24 27 | eqtrd | |- ( ph -> ( Base ` ( RngCat ` U ) ) = B ) |
| 29 | 28 | sqxpeqd | |- ( ph -> ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) = ( B X. B ) ) |
| 30 | 29 | reseq2d | |- ( ph -> ( RngHom |` ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) ) = ( RngHom |` ( B X. B ) ) ) |
| 31 | 23 30 | eqtrd | |- ( ph -> ( Hom ` ( RngCat ` U ) ) = ( RngHom |` ( B X. B ) ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ x e. B ) -> ( Hom ` ( RngCat ` U ) ) = ( RngHom |` ( B X. B ) ) ) |
| 33 | 32 | eqcomd | |- ( ( ph /\ x e. B ) -> ( RngHom |` ( B X. B ) ) = ( Hom ` ( RngCat ` U ) ) ) |
| 34 | 33 | oveqd | |- ( ( ph /\ x e. B ) -> ( x ( RngHom |` ( B X. B ) ) x ) = ( x ( Hom ` ( RngCat ` U ) ) x ) ) |
| 35 | 26 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( U i^i Rng ) ) ) |
| 36 | 35 | biimpa | |- ( ( ph /\ x e. B ) -> x e. ( U i^i Rng ) ) |
| 37 | 24 | adantr | |- ( ( ph /\ x e. B ) -> ( Base ` ( RngCat ` U ) ) = ( U i^i Rng ) ) |
| 38 | 36 37 | eleqtrrd | |- ( ( ph /\ x e. B ) -> x e. ( Base ` ( RngCat ` U ) ) ) |
| 39 | 20 21 14 22 38 38 | rngchom | |- ( ( ph /\ x e. B ) -> ( x ( Hom ` ( RngCat ` U ) ) x ) = ( x RngHom x ) ) |
| 40 | 19 34 39 | 3eqtrd | |- ( ( ph /\ x e. B ) -> ( x H x ) = ( x RngHom x ) ) |
| 41 | 12 18 40 | 3eltr4d | |- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |