This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnghmco | |- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( F o. G ) e. ( S RngHom U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmrcl | |- ( F e. ( T RngHom U ) -> ( T e. Rng /\ U e. Rng ) ) |
|
| 2 | 1 | simprd | |- ( F e. ( T RngHom U ) -> U e. Rng ) |
| 3 | rnghmrcl | |- ( G e. ( S RngHom T ) -> ( S e. Rng /\ T e. Rng ) ) |
|
| 4 | 3 | simpld | |- ( G e. ( S RngHom T ) -> S e. Rng ) |
| 5 | 2 4 | anim12ci | |- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( S e. Rng /\ U e. Rng ) ) |
| 6 | rnghmghm | |- ( F e. ( T RngHom U ) -> F e. ( T GrpHom U ) ) |
|
| 7 | rnghmghm | |- ( G e. ( S RngHom T ) -> G e. ( S GrpHom T ) ) |
|
| 8 | ghmco | |- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| 10 | eqid | |- ( mulGrp ` T ) = ( mulGrp ` T ) |
|
| 11 | eqid | |- ( mulGrp ` U ) = ( mulGrp ` U ) |
|
| 12 | 10 11 | rnghmmgmhm | |- ( F e. ( T RngHom U ) -> F e. ( ( mulGrp ` T ) MgmHom ( mulGrp ` U ) ) ) |
| 13 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 14 | 13 10 | rnghmmgmhm | |- ( G e. ( S RngHom T ) -> G e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) |
| 15 | mgmhmco | |- ( ( F e. ( ( mulGrp ` T ) MgmHom ( mulGrp ` U ) ) /\ G e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) |
|
| 16 | 12 14 15 | syl2an | |- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) |
| 17 | 9 16 | jca | |- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) ) |
| 18 | 13 11 | isrnghmmul | |- ( ( F o. G ) e. ( S RngHom U ) <-> ( ( S e. Rng /\ U e. Rng ) /\ ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) ) ) |
| 19 | 5 17 18 | sylanbrc | |- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( F o. G ) e. ( S RngHom U ) ) |