This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inclfusubc.j | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| inclfusubc.s | |- S = ( C |`cat J ) |
||
| inclfusubc.b | |- B = ( Base ` S ) |
||
| inclfusubc.f | |- ( ph -> F = ( _I |` B ) ) |
||
| inclfusubc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) ) |
||
| Assertion | inclfusubc | |- ( ph -> F ( S Func C ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inclfusubc.j | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| 2 | inclfusubc.s | |- S = ( C |`cat J ) |
|
| 3 | inclfusubc.b | |- B = ( Base ` S ) |
|
| 4 | inclfusubc.f | |- ( ph -> F = ( _I |` B ) ) |
|
| 5 | inclfusubc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) ) |
|
| 6 | fthfunc | |- ( S Faith C ) C_ ( S Func C ) |
|
| 7 | eqid | |- ( idFunc ` S ) = ( idFunc ` S ) |
|
| 8 | 2 7 | rescfth | |- ( J e. ( Subcat ` C ) -> ( idFunc ` S ) e. ( S Faith C ) ) |
| 9 | 1 8 | syl | |- ( ph -> ( idFunc ` S ) e. ( S Faith C ) ) |
| 10 | 6 9 | sselid | |- ( ph -> ( idFunc ` S ) e. ( S Func C ) ) |
| 11 | df-br | |- ( F ( S Func C ) G <-> <. F , G >. e. ( S Func C ) ) |
|
| 12 | 4 5 | opeq12d | |- ( ph -> <. F , G >. = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
| 13 | 2 7 3 | idfusubc | |- ( J e. ( Subcat ` C ) -> ( idFunc ` S ) = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
| 14 | 1 13 | syl | |- ( ph -> ( idFunc ` S ) = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
| 15 | 12 14 | eqtr4d | |- ( ph -> <. F , G >. = ( idFunc ` S ) ) |
| 16 | 15 | eleq1d | |- ( ph -> ( <. F , G >. e. ( S Func C ) <-> ( idFunc ` S ) e. ( S Func C ) ) ) |
| 17 | 11 16 | bitrid | |- ( ph -> ( F ( S Func C ) G <-> ( idFunc ` S ) e. ( S Func C ) ) ) |
| 18 | 10 17 | mpbird | |- ( ph -> F ( S Func C ) G ) |