This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of restricted "at most one". Note that E* x e. A ph is not equivalent to E. y e. A A. x e. A ( ph -> x = y ) (in analogy to reu6 ); to see this, let A be the empty set. However, one direction of this pattern holds; see rmo2i . (Contributed by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmo2.1 | |- F/ y ph |
|
| Assertion | rmo2 | |- ( E* x e. A ph <-> E. y A. x e. A ( ph -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo2.1 | |- F/ y ph |
|
| 2 | df-rmo | |- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
|
| 3 | nfv | |- F/ y x e. A |
|
| 4 | 3 1 | nfan | |- F/ y ( x e. A /\ ph ) |
| 5 | 4 | mof | |- ( E* x ( x e. A /\ ph ) <-> E. y A. x ( ( x e. A /\ ph ) -> x = y ) ) |
| 6 | impexp | |- ( ( ( x e. A /\ ph ) -> x = y ) <-> ( x e. A -> ( ph -> x = y ) ) ) |
|
| 7 | 6 | albii | |- ( A. x ( ( x e. A /\ ph ) -> x = y ) <-> A. x ( x e. A -> ( ph -> x = y ) ) ) |
| 8 | df-ral | |- ( A. x e. A ( ph -> x = y ) <-> A. x ( x e. A -> ( ph -> x = y ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( A. x ( ( x e. A /\ ph ) -> x = y ) <-> A. x e. A ( ph -> x = y ) ) |
| 10 | 9 | exbii | |- ( E. y A. x ( ( x e. A /\ ph ) -> x = y ) <-> E. y A. x e. A ( ph -> x = y ) ) |
| 11 | 2 5 10 | 3bitri | |- ( E* x e. A ph <-> E. y A. x e. A ( ph -> x = y ) ) |