This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduction of a conjunct into restricted unique existential quantifier, analogous to euan . (Contributed by Alexander van der Vekens, 2-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmoanim.1 | |- F/ x ph |
|
| Assertion | reuan | |- ( E! x e. A ( ph /\ ps ) <-> ( ph /\ E! x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoanim.1 | |- F/ x ph |
|
| 2 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 3 | 2 | a1i | |- ( x e. A -> ( ( ph /\ ps ) -> ph ) ) |
| 4 | 1 3 | rexlimi | |- ( E. x e. A ( ph /\ ps ) -> ph ) |
| 5 | 4 | adantr | |- ( ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) -> ph ) |
| 6 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
| 7 | 6 | reximi | |- ( E. x e. A ( ph /\ ps ) -> E. x e. A ps ) |
| 8 | 7 | adantr | |- ( ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) -> E. x e. A ps ) |
| 9 | nfre1 | |- F/ x E. x e. A ( ph /\ ps ) |
|
| 10 | 4 | adantr | |- ( ( E. x e. A ( ph /\ ps ) /\ x e. A ) -> ph ) |
| 11 | 10 | a1d | |- ( ( E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ps -> ph ) ) |
| 12 | 11 | ancrd | |- ( ( E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ps -> ( ph /\ ps ) ) ) |
| 13 | 6 12 | impbid2 | |- ( ( E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ( ph /\ ps ) <-> ps ) ) |
| 14 | 9 13 | rmobida | |- ( E. x e. A ( ph /\ ps ) -> ( E* x e. A ( ph /\ ps ) <-> E* x e. A ps ) ) |
| 15 | 14 | biimpa | |- ( ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) -> E* x e. A ps ) |
| 16 | 5 8 15 | jca32 | |- ( ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) -> ( ph /\ ( E. x e. A ps /\ E* x e. A ps ) ) ) |
| 17 | reu5 | |- ( E! x e. A ( ph /\ ps ) <-> ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) ) |
|
| 18 | reu5 | |- ( E! x e. A ps <-> ( E. x e. A ps /\ E* x e. A ps ) ) |
|
| 19 | 18 | anbi2i | |- ( ( ph /\ E! x e. A ps ) <-> ( ph /\ ( E. x e. A ps /\ E* x e. A ps ) ) ) |
| 20 | 16 17 19 | 3imtr4i | |- ( E! x e. A ( ph /\ ps ) -> ( ph /\ E! x e. A ps ) ) |
| 21 | ibar | |- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
|
| 22 | 21 | adantr | |- ( ( ph /\ x e. A ) -> ( ps <-> ( ph /\ ps ) ) ) |
| 23 | 1 22 | reubida | |- ( ph -> ( E! x e. A ps <-> E! x e. A ( ph /\ ps ) ) ) |
| 24 | 23 | biimpa | |- ( ( ph /\ E! x e. A ps ) -> E! x e. A ( ph /\ ps ) ) |
| 25 | 20 24 | impbii | |- ( E! x e. A ( ph /\ ps ) <-> ( ph /\ E! x e. A ps ) ) |