This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring, a left invertible element is different from zero iff .1. =/= .0. . (Contributed by FL, 18-Apr-2010) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringinvnzdiv.b | |- B = ( Base ` R ) |
|
| ringinvnzdiv.t | |- .x. = ( .r ` R ) |
||
| ringinvnzdiv.u | |- .1. = ( 1r ` R ) |
||
| ringinvnzdiv.z | |- .0. = ( 0g ` R ) |
||
| ringinvnzdiv.r | |- ( ph -> R e. Ring ) |
||
| ringinvnzdiv.x | |- ( ph -> X e. B ) |
||
| ringinvnzdiv.a | |- ( ph -> E. a e. B ( a .x. X ) = .1. ) |
||
| Assertion | ringinvnz1ne0 | |- ( ph -> ( X =/= .0. <-> .1. =/= .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvnzdiv.b | |- B = ( Base ` R ) |
|
| 2 | ringinvnzdiv.t | |- .x. = ( .r ` R ) |
|
| 3 | ringinvnzdiv.u | |- .1. = ( 1r ` R ) |
|
| 4 | ringinvnzdiv.z | |- .0. = ( 0g ` R ) |
|
| 5 | ringinvnzdiv.r | |- ( ph -> R e. Ring ) |
|
| 6 | ringinvnzdiv.x | |- ( ph -> X e. B ) |
|
| 7 | ringinvnzdiv.a | |- ( ph -> E. a e. B ( a .x. X ) = .1. ) |
|
| 8 | oveq2 | |- ( X = .0. -> ( a .x. X ) = ( a .x. .0. ) ) |
|
| 9 | 1 2 4 | ringrz | |- ( ( R e. Ring /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
| 10 | 5 9 | sylan | |- ( ( ph /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
| 11 | eqeq12 | |- ( ( ( a .x. X ) = .1. /\ ( a .x. .0. ) = .0. ) -> ( ( a .x. X ) = ( a .x. .0. ) <-> .1. = .0. ) ) |
|
| 12 | 11 | biimpd | |- ( ( ( a .x. X ) = .1. /\ ( a .x. .0. ) = .0. ) -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) |
| 13 | 12 | ex | |- ( ( a .x. X ) = .1. -> ( ( a .x. .0. ) = .0. -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) ) |
| 14 | 10 13 | mpan9 | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) |
| 15 | 8 14 | syl5 | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( X = .0. -> .1. = .0. ) ) |
| 16 | oveq2 | |- ( .1. = .0. -> ( X .x. .1. ) = ( X .x. .0. ) ) |
|
| 17 | 1 2 3 | ringridm | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .1. ) = X ) |
| 18 | 1 2 4 | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| 19 | 17 18 | eqeq12d | |- ( ( R e. Ring /\ X e. B ) -> ( ( X .x. .1. ) = ( X .x. .0. ) <-> X = .0. ) ) |
| 20 | 19 | biimpd | |- ( ( R e. Ring /\ X e. B ) -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) |
| 21 | 5 6 20 | syl2anc | |- ( ph -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) |
| 22 | 21 | ad2antrr | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) |
| 23 | 16 22 | syl5 | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. = .0. -> X = .0. ) ) |
| 24 | 15 23 | impbid | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( X = .0. <-> .1. = .0. ) ) |
| 25 | 24 7 | r19.29a | |- ( ph -> ( X = .0. <-> .1. = .0. ) ) |
| 26 | 25 | necon3bid | |- ( ph -> ( X =/= .0. <-> .1. =/= .0. ) ) |