This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cru | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C e. RR ) |
|
| 2 | 1 | recnd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C e. CC ) |
| 3 | simplll | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A e. RR ) |
|
| 4 | 3 | recnd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A e. CC ) |
| 5 | simpr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
|
| 6 | ax-icn | |- _i e. CC |
|
| 7 | 6 | a1i | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> _i e. CC ) |
| 8 | simpllr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B e. RR ) |
|
| 9 | 8 | recnd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B e. CC ) |
| 10 | 7 9 | mulcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. B ) e. CC ) |
| 11 | simplrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> D e. RR ) |
|
| 12 | 11 | recnd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> D e. CC ) |
| 13 | 7 12 | mulcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. D ) e. CC ) |
| 14 | 4 10 2 13 | addsubeq4d | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( C - A ) = ( ( _i x. B ) - ( _i x. D ) ) ) ) |
| 15 | 5 14 | mpbid | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) = ( ( _i x. B ) - ( _i x. D ) ) ) |
| 16 | 8 11 | resubcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( B - D ) e. RR ) |
| 17 | 7 9 12 | subdid | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) = ( ( _i x. B ) - ( _i x. D ) ) ) |
| 18 | 17 15 | eqtr4d | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) = ( C - A ) ) |
| 19 | 1 3 | resubcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) e. RR ) |
| 20 | 18 19 | eqeltrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) e. RR ) |
| 21 | rimul | |- ( ( ( B - D ) e. RR /\ ( _i x. ( B - D ) ) e. RR ) -> ( B - D ) = 0 ) |
|
| 22 | 16 20 21 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( B - D ) = 0 ) |
| 23 | 9 12 22 | subeq0d | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B = D ) |
| 24 | 23 | oveq2d | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. B ) = ( _i x. D ) ) |
| 25 | 24 | oveq1d | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( _i x. B ) - ( _i x. D ) ) = ( ( _i x. D ) - ( _i x. D ) ) ) |
| 26 | 13 | subidd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( _i x. D ) - ( _i x. D ) ) = 0 ) |
| 27 | 15 25 26 | 3eqtrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) = 0 ) |
| 28 | 2 4 27 | subeq0d | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C = A ) |
| 29 | 28 | eqcomd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A = C ) |
| 30 | 29 23 | jca | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( A = C /\ B = D ) ) |
| 31 | 30 | ex | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) -> ( A = C /\ B = D ) ) ) |
| 32 | oveq2 | |- ( B = D -> ( _i x. B ) = ( _i x. D ) ) |
|
| 33 | oveq12 | |- ( ( A = C /\ ( _i x. B ) = ( _i x. D ) ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
|
| 34 | 32 33 | sylan2 | |- ( ( A = C /\ B = D ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
| 35 | 31 34 | impbid1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( A = C /\ B = D ) ) ) |