This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mhmismgmhm | |- ( F e. ( R MndHom S ) -> F e. ( R MgmHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm | |- ( R e. Mnd -> R e. Mgm ) |
|
| 2 | mndmgm | |- ( S e. Mnd -> S e. Mgm ) |
|
| 3 | 1 2 | anim12i | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( R e. Mgm /\ S e. Mgm ) ) |
| 4 | 3simpa | |- ( ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) /\ ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) -> ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) |
|
| 5 | 3 4 | anim12i | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) /\ ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) ) -> ( ( R e. Mgm /\ S e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) ) |
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 8 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 9 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 10 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 11 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 12 | 6 7 8 9 10 11 | ismhm | |- ( F e. ( R MndHom S ) <-> ( ( R e. Mnd /\ S e. Mnd ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) /\ ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) ) ) |
| 13 | 6 7 8 9 | ismgmhm | |- ( F e. ( R MgmHom S ) <-> ( ( R e. Mgm /\ S e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) ) |
| 14 | 5 12 13 | 3imtr4i | |- ( F e. ( R MndHom S ) -> F e. ( R MgmHom S ) ) |