This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvsca.r | |- R = ( W |`v A ) |
|
| resvsca.f | |- F = ( Scalar ` W ) |
||
| resvsca.b | |- B = ( Base ` F ) |
||
| Assertion | resvsca | |- ( A e. V -> ( F |`s A ) = ( Scalar ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvsca.r | |- R = ( W |`v A ) |
|
| 2 | resvsca.f | |- F = ( Scalar ` W ) |
|
| 3 | resvsca.b | |- B = ( Base ` F ) |
|
| 4 | 2 | fvexi | |- F e. _V |
| 5 | eqid | |- ( F |`s A ) = ( F |`s A ) |
|
| 6 | 5 3 | ressid2 | |- ( ( B C_ A /\ F e. _V /\ A e. V ) -> ( F |`s A ) = F ) |
| 7 | 4 6 | mp3an2 | |- ( ( B C_ A /\ A e. V ) -> ( F |`s A ) = F ) |
| 8 | 7 | 3adant2 | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = F ) |
| 9 | 1 2 3 | resvid2 | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
| 10 | 9 | fveq2d | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( Scalar ` R ) = ( Scalar ` W ) ) |
| 11 | 2 8 10 | 3eqtr4a | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) |
| 12 | 11 | 3expib | |- ( B C_ A -> ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) ) |
| 13 | simp2 | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> W e. _V ) |
|
| 14 | ovex | |- ( F |`s A ) e. _V |
|
| 15 | scaid | |- Scalar = Slot ( Scalar ` ndx ) |
|
| 16 | 15 | setsid | |- ( ( W e. _V /\ ( F |`s A ) e. _V ) -> ( F |`s A ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) |
| 17 | 13 14 16 | sylancl | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) |
| 18 | 1 2 3 | resvval2 | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) |
| 19 | 18 | fveq2d | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( Scalar ` R ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) |
| 20 | 17 19 | eqtr4d | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) |
| 21 | 20 | 3expib | |- ( -. B C_ A -> ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) ) |
| 22 | 12 21 | pm2.61i | |- ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) |
| 23 | 0fv | |- ( (/) ` ( Scalar ` ndx ) ) = (/) |
|
| 24 | 0ex | |- (/) e. _V |
|
| 25 | 24 15 | strfvn | |- ( Scalar ` (/) ) = ( (/) ` ( Scalar ` ndx ) ) |
| 26 | ress0 | |- ( (/) |`s A ) = (/) |
|
| 27 | 23 25 26 | 3eqtr4ri | |- ( (/) |`s A ) = ( Scalar ` (/) ) |
| 28 | fvprc | |- ( -. W e. _V -> ( Scalar ` W ) = (/) ) |
|
| 29 | 2 28 | eqtrid | |- ( -. W e. _V -> F = (/) ) |
| 30 | 29 | oveq1d | |- ( -. W e. _V -> ( F |`s A ) = ( (/) |`s A ) ) |
| 31 | reldmresv | |- Rel dom |`v |
|
| 32 | 31 | ovprc1 | |- ( -. W e. _V -> ( W |`v A ) = (/) ) |
| 33 | 1 32 | eqtrid | |- ( -. W e. _V -> R = (/) ) |
| 34 | 33 | fveq2d | |- ( -. W e. _V -> ( Scalar ` R ) = ( Scalar ` (/) ) ) |
| 35 | 27 30 34 | 3eqtr4a | |- ( -. W e. _V -> ( F |`s A ) = ( Scalar ` R ) ) |
| 36 | 35 | adantr | |- ( ( -. W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) |
| 37 | 22 36 | pm2.61ian | |- ( A e. V -> ( F |`s A ) = ( Scalar ` R ) ) |