This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvlem.r | |- R = ( W |`v A ) |
|
| resvlem.e | |- C = ( E ` W ) |
||
| resvlem.f | |- E = Slot ( E ` ndx ) |
||
| resvlem.n | |- ( E ` ndx ) =/= ( Scalar ` ndx ) |
||
| Assertion | resvlem | |- ( A e. V -> C = ( E ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvlem.r | |- R = ( W |`v A ) |
|
| 2 | resvlem.e | |- C = ( E ` W ) |
|
| 3 | resvlem.f | |- E = Slot ( E ` ndx ) |
|
| 4 | resvlem.n | |- ( E ` ndx ) =/= ( Scalar ` ndx ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 7 | 1 5 6 | resvid2 | |- ( ( ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
| 8 | 7 | fveq2d | |- ( ( ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 9 | 8 | 3expib | |- ( ( Base ` ( Scalar ` W ) ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
| 10 | 1 5 6 | resvval2 | |- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) |
| 11 | 10 | fveq2d | |- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) ) |
| 12 | 3 4 | setsnid | |- ( E ` W ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) |
| 13 | 11 12 | eqtr4di | |- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 14 | 13 | 3expib | |- ( -. ( Base ` ( Scalar ` W ) ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
| 15 | 9 14 | pm2.61i | |- ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 16 | 3 | str0 | |- (/) = ( E ` (/) ) |
| 17 | 16 | eqcomi | |- ( E ` (/) ) = (/) |
| 18 | reldmresv | |- Rel dom |`v |
|
| 19 | 17 1 18 | oveqprc | |- ( -. W e. _V -> ( E ` W ) = ( E ` R ) ) |
| 20 | 19 | eqcomd | |- ( -. W e. _V -> ( E ` R ) = ( E ` W ) ) |
| 21 | 20 | adantr | |- ( ( -. W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 22 | 15 21 | pm2.61ian | |- ( A e. V -> ( E ` R ) = ( E ` W ) ) |
| 23 | 2 22 | eqtr4id | |- ( A e. V -> C = ( E ` R ) ) |