This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvsca.r | ⊢ 𝑅 = ( 𝑊 ↾v 𝐴 ) | |
| resvsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| resvsca.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| Assertion | resvsca | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvsca.r | ⊢ 𝑅 = ( 𝑊 ↾v 𝐴 ) | |
| 2 | resvsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | resvsca.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | 2 | fvexi | ⊢ 𝐹 ∈ V |
| 5 | eqid | ⊢ ( 𝐹 ↾s 𝐴 ) = ( 𝐹 ↾s 𝐴 ) | |
| 6 | 5 3 | ressid2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = 𝐹 ) |
| 7 | 4 6 | mp3an2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = 𝐹 ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = 𝐹 ) |
| 9 | 1 2 3 | resvid2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = 𝑊 ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑊 ) ) |
| 11 | 2 8 10 | 3eqtr4a | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
| 12 | 11 | 3expib | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) ) |
| 13 | simp2 | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ V ) | |
| 14 | ovex | ⊢ ( 𝐹 ↾s 𝐴 ) ∈ V | |
| 15 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 16 | 15 | setsid | ⊢ ( ( 𝑊 ∈ V ∧ ( 𝐹 ↾s 𝐴 ) ∈ V ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
| 17 | 13 14 16 | sylancl | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
| 18 | 1 2 3 | resvval2 | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
| 20 | 17 19 | eqtr4d | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
| 21 | 20 | 3expib | ⊢ ( ¬ 𝐵 ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) ) |
| 22 | 12 21 | pm2.61i | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
| 23 | 0fv | ⊢ ( ∅ ‘ ( Scalar ‘ ndx ) ) = ∅ | |
| 24 | 0ex | ⊢ ∅ ∈ V | |
| 25 | 24 15 | strfvn | ⊢ ( Scalar ‘ ∅ ) = ( ∅ ‘ ( Scalar ‘ ndx ) ) |
| 26 | ress0 | ⊢ ( ∅ ↾s 𝐴 ) = ∅ | |
| 27 | 23 25 26 | 3eqtr4ri | ⊢ ( ∅ ↾s 𝐴 ) = ( Scalar ‘ ∅ ) |
| 28 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( Scalar ‘ 𝑊 ) = ∅ ) | |
| 29 | 2 28 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐹 = ∅ ) |
| 30 | 29 | oveq1d | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐹 ↾s 𝐴 ) = ( ∅ ↾s 𝐴 ) ) |
| 31 | reldmresv | ⊢ Rel dom ↾v | |
| 32 | 31 | ovprc1 | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾v 𝐴 ) = ∅ ) |
| 33 | 1 32 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝑅 = ∅ ) |
| 34 | 33 | fveq2d | ⊢ ( ¬ 𝑊 ∈ V → ( Scalar ‘ 𝑅 ) = ( Scalar ‘ ∅ ) ) |
| 35 | 27 30 34 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
| 36 | 35 | adantr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
| 37 | 22 36 | pm2.61ian | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |