This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restin.1 | |- X = U. J |
|
| Assertion | restuni2 | |- ( ( J e. Top /\ A e. V ) -> ( A i^i X ) = U. ( J |`t A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restin.1 | |- X = U. J |
|
| 2 | simpl | |- ( ( J e. Top /\ A e. V ) -> J e. Top ) |
|
| 3 | inss2 | |- ( A i^i X ) C_ X |
|
| 4 | 1 | restuni | |- ( ( J e. Top /\ ( A i^i X ) C_ X ) -> ( A i^i X ) = U. ( J |`t ( A i^i X ) ) ) |
| 5 | 2 3 4 | sylancl | |- ( ( J e. Top /\ A e. V ) -> ( A i^i X ) = U. ( J |`t ( A i^i X ) ) ) |
| 6 | 1 | restin | |- ( ( J e. Top /\ A e. V ) -> ( J |`t A ) = ( J |`t ( A i^i X ) ) ) |
| 7 | 6 | unieqd | |- ( ( J e. Top /\ A e. V ) -> U. ( J |`t A ) = U. ( J |`t ( A i^i X ) ) ) |
| 8 | 5 7 | eqtr4d | |- ( ( J e. Top /\ A e. V ) -> ( A i^i X ) = U. ( J |`t A ) ) |