This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnviin | |- ( A =/= (/) -> `' |^|_ x e. A B = |^|_ x e. A `' B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' |^|_ x e. A B |
|
| 2 | relcnv | |- Rel `' B |
|
| 3 | df-rel | |- ( Rel `' B <-> `' B C_ ( _V X. _V ) ) |
|
| 4 | 2 3 | mpbi | |- `' B C_ ( _V X. _V ) |
| 5 | 4 | rgenw | |- A. x e. A `' B C_ ( _V X. _V ) |
| 6 | r19.2z | |- ( ( A =/= (/) /\ A. x e. A `' B C_ ( _V X. _V ) ) -> E. x e. A `' B C_ ( _V X. _V ) ) |
|
| 7 | 5 6 | mpan2 | |- ( A =/= (/) -> E. x e. A `' B C_ ( _V X. _V ) ) |
| 8 | iinss | |- ( E. x e. A `' B C_ ( _V X. _V ) -> |^|_ x e. A `' B C_ ( _V X. _V ) ) |
|
| 9 | 7 8 | syl | |- ( A =/= (/) -> |^|_ x e. A `' B C_ ( _V X. _V ) ) |
| 10 | df-rel | |- ( Rel |^|_ x e. A `' B <-> |^|_ x e. A `' B C_ ( _V X. _V ) ) |
|
| 11 | 9 10 | sylibr | |- ( A =/= (/) -> Rel |^|_ x e. A `' B ) |
| 12 | opex | |- <. b , a >. e. _V |
|
| 13 | eliin | |- ( <. b , a >. e. _V -> ( <. b , a >. e. |^|_ x e. A B <-> A. x e. A <. b , a >. e. B ) ) |
|
| 14 | 12 13 | ax-mp | |- ( <. b , a >. e. |^|_ x e. A B <-> A. x e. A <. b , a >. e. B ) |
| 15 | vex | |- a e. _V |
|
| 16 | vex | |- b e. _V |
|
| 17 | 15 16 | opelcnv | |- ( <. a , b >. e. `' |^|_ x e. A B <-> <. b , a >. e. |^|_ x e. A B ) |
| 18 | opex | |- <. a , b >. e. _V |
|
| 19 | eliin | |- ( <. a , b >. e. _V -> ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. a , b >. e. `' B ) ) |
|
| 20 | 18 19 | ax-mp | |- ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. a , b >. e. `' B ) |
| 21 | 15 16 | opelcnv | |- ( <. a , b >. e. `' B <-> <. b , a >. e. B ) |
| 22 | 21 | ralbii | |- ( A. x e. A <. a , b >. e. `' B <-> A. x e. A <. b , a >. e. B ) |
| 23 | 20 22 | bitri | |- ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. b , a >. e. B ) |
| 24 | 14 17 23 | 3bitr4i | |- ( <. a , b >. e. `' |^|_ x e. A B <-> <. a , b >. e. |^|_ x e. A `' B ) |
| 25 | 24 | eqrelriv | |- ( ( Rel `' |^|_ x e. A B /\ Rel |^|_ x e. A `' B ) -> `' |^|_ x e. A B = |^|_ x e. A `' B ) |
| 26 | 1 11 25 | sylancr | |- ( A =/= (/) -> `' |^|_ x e. A B = |^|_ x e. A `' B ) |