This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmpl.s | |- S = ( I mPoly R ) |
|
| ressmpl.h | |- H = ( R |`s T ) |
||
| ressmpl.u | |- U = ( I mPoly H ) |
||
| ressmpl.b | |- B = ( Base ` U ) |
||
| ressmpl.1 | |- ( ph -> I e. V ) |
||
| ressmpl.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| ressmpl.p | |- P = ( S |`s B ) |
||
| Assertion | ressmplbas | |- ( ph -> B = ( Base ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.s | |- S = ( I mPoly R ) |
|
| 2 | ressmpl.h | |- H = ( R |`s T ) |
|
| 3 | ressmpl.u | |- U = ( I mPoly H ) |
|
| 4 | ressmpl.b | |- B = ( Base ` U ) |
|
| 5 | ressmpl.1 | |- ( ph -> I e. V ) |
|
| 6 | ressmpl.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | ressmpl.p | |- P = ( S |`s B ) |
|
| 8 | eqid | |- ( I mPwSer H ) = ( I mPwSer H ) |
|
| 9 | eqid | |- ( Base ` ( I mPwSer H ) ) = ( Base ` ( I mPwSer H ) ) |
|
| 10 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 11 | 1 2 3 4 5 6 8 9 10 | ressmplbas2 | |- ( ph -> B = ( ( Base ` ( I mPwSer H ) ) i^i ( Base ` S ) ) ) |
| 12 | inss2 | |- ( ( Base ` ( I mPwSer H ) ) i^i ( Base ` S ) ) C_ ( Base ` S ) |
|
| 13 | 11 12 | eqsstrdi | |- ( ph -> B C_ ( Base ` S ) ) |
| 14 | 7 10 | ressbas2 | |- ( B C_ ( Base ` S ) -> B = ( Base ` P ) ) |
| 15 | 13 14 | syl | |- ( ph -> B = ( Base ` P ) ) |