This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting W = _V (if strong equality is known on .s ) or assuming K is a ring. (Contributed by Mario Carneiro, 5-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclpropd.f | |- F = ( Scalar ` K ) |
|
| asclpropd.g | |- G = ( Scalar ` L ) |
||
| asclpropd.1 | |- ( ph -> P = ( Base ` F ) ) |
||
| asclpropd.2 | |- ( ph -> P = ( Base ` G ) ) |
||
| asclpropd.3 | |- ( ( ph /\ ( x e. P /\ y e. W ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
||
| asclpropd.4 | |- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
||
| asclpropd.5 | |- ( ph -> ( 1r ` K ) e. W ) |
||
| Assertion | asclpropd | |- ( ph -> ( algSc ` K ) = ( algSc ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclpropd.f | |- F = ( Scalar ` K ) |
|
| 2 | asclpropd.g | |- G = ( Scalar ` L ) |
|
| 3 | asclpropd.1 | |- ( ph -> P = ( Base ` F ) ) |
|
| 4 | asclpropd.2 | |- ( ph -> P = ( Base ` G ) ) |
|
| 5 | asclpropd.3 | |- ( ( ph /\ ( x e. P /\ y e. W ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
|
| 6 | asclpropd.4 | |- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
|
| 7 | asclpropd.5 | |- ( ph -> ( 1r ` K ) e. W ) |
|
| 8 | 5 | oveqrspc2v | |- ( ( ph /\ ( z e. P /\ ( 1r ` K ) e. W ) ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) ) |
| 9 | 8 | anassrs | |- ( ( ( ph /\ z e. P ) /\ ( 1r ` K ) e. W ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) ) |
| 10 | 7 9 | mpidan | |- ( ( ph /\ z e. P ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) ) |
| 11 | 6 | oveq2d | |- ( ph -> ( z ( .s ` L ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ z e. P ) -> ( z ( .s ` L ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) ) |
| 13 | 10 12 | eqtrd | |- ( ( ph /\ z e. P ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) ) |
| 14 | 13 | mpteq2dva | |- ( ph -> ( z e. P |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. P |-> ( z ( .s ` L ) ( 1r ` L ) ) ) ) |
| 15 | 3 | mpteq1d | |- ( ph -> ( z e. P |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) ) ) |
| 16 | 4 | mpteq1d | |- ( ph -> ( z e. P |-> ( z ( .s ` L ) ( 1r ` L ) ) ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) ) ) |
| 17 | 14 15 16 | 3eqtr3d | |- ( ph -> ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) ) ) |
| 18 | eqid | |- ( algSc ` K ) = ( algSc ` K ) |
|
| 19 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 20 | eqid | |- ( .s ` K ) = ( .s ` K ) |
|
| 21 | eqid | |- ( 1r ` K ) = ( 1r ` K ) |
|
| 22 | 18 1 19 20 21 | asclfval | |- ( algSc ` K ) = ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) ) |
| 23 | eqid | |- ( algSc ` L ) = ( algSc ` L ) |
|
| 24 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 25 | eqid | |- ( .s ` L ) = ( .s ` L ) |
|
| 26 | eqid | |- ( 1r ` L ) = ( 1r ` L ) |
|
| 27 | 23 2 24 25 26 | asclfval | |- ( algSc ` L ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) ) |
| 28 | 17 22 27 | 3eqtr4g | |- ( ph -> ( algSc ` K ) = ( algSc ` L ) ) |