This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rescofuf | |- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- g e. _V |
|
| 2 | vex | |- f e. _V |
|
| 3 | opex | |- <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. _V |
|
| 4 | df-cofu | |- o.func = ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
|
| 5 | 4 | ovmpt4g | |- ( ( g e. _V /\ f e. _V /\ <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. _V ) -> ( g o.func f ) = <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
| 6 | 1 2 3 5 | mp3an | |- ( g o.func f ) = <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. |
| 7 | simpr | |- ( ( g e. ( D Func E ) /\ f e. ( C Func D ) ) -> f e. ( C Func D ) ) |
|
| 8 | simpl | |- ( ( g e. ( D Func E ) /\ f e. ( C Func D ) ) -> g e. ( D Func E ) ) |
|
| 9 | 7 8 | cofucl | |- ( ( g e. ( D Func E ) /\ f e. ( C Func D ) ) -> ( g o.func f ) e. ( C Func E ) ) |
| 10 | 6 9 | eqeltrrid | |- ( ( g e. ( D Func E ) /\ f e. ( C Func D ) ) -> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. ( C Func E ) ) |
| 11 | 10 | rgen2 | |- A. g e. ( D Func E ) A. f e. ( C Func D ) <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. ( C Func E ) |
| 12 | 4 | reseq1i | |- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) = ( ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |` ( ( D Func E ) X. ( C Func D ) ) ) |
| 13 | ssv | |- ( D Func E ) C_ _V |
|
| 14 | ssv | |- ( C Func D ) C_ _V |
|
| 15 | resmpo | |- ( ( ( D Func E ) C_ _V /\ ( C Func D ) C_ _V ) -> ( ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |` ( ( D Func E ) X. ( C Func D ) ) ) = ( g e. ( D Func E ) , f e. ( C Func D ) |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) ) |
|
| 16 | 13 14 15 | mp2an | |- ( ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |` ( ( D Func E ) X. ( C Func D ) ) ) = ( g e. ( D Func E ) , f e. ( C Func D ) |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
| 17 | 12 16 | eqtri | |- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) = ( g e. ( D Func E ) , f e. ( C Func D ) |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
| 18 | 17 | fmpo | |- ( A. g e. ( D Func E ) A. f e. ( C Func D ) <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. ( C Func E ) <-> ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) ) |
| 19 | 11 18 | mpbi | |- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) |