This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inclusion functor from a subcategory is a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescfth.d | |- D = ( C |`cat J ) |
|
| rescfth.i | |- I = ( idFunc ` D ) |
||
| Assertion | rescfth | |- ( J e. ( Subcat ` C ) -> I e. ( D Faith C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescfth.d | |- D = ( C |`cat J ) |
|
| 2 | rescfth.i | |- I = ( idFunc ` D ) |
|
| 3 | 1 | oveq2i | |- ( D Faith D ) = ( D Faith ( C |`cat J ) ) |
| 4 | fthres2 | |- ( J e. ( Subcat ` C ) -> ( D Faith ( C |`cat J ) ) C_ ( D Faith C ) ) |
|
| 5 | 3 4 | eqsstrid | |- ( J e. ( Subcat ` C ) -> ( D Faith D ) C_ ( D Faith C ) ) |
| 6 | id | |- ( J e. ( Subcat ` C ) -> J e. ( Subcat ` C ) ) |
|
| 7 | 1 6 | subccat | |- ( J e. ( Subcat ` C ) -> D e. Cat ) |
| 8 | 2 | idffth | |- ( D e. Cat -> I e. ( ( D Full D ) i^i ( D Faith D ) ) ) |
| 9 | 7 8 | syl | |- ( J e. ( Subcat ` C ) -> I e. ( ( D Full D ) i^i ( D Faith D ) ) ) |
| 10 | 9 | elin2d | |- ( J e. ( Subcat ` C ) -> I e. ( D Faith D ) ) |
| 11 | 5 10 | sseldd | |- ( J e. ( Subcat ` C ) -> I e. ( D Faith C ) ) |