This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inclusion functor from a subcategory is a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescfth.d | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| rescfth.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | ||
| Assertion | rescfth | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( 𝐷 Faith 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescfth.d | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| 2 | rescfth.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 3 | 1 | oveq2i | ⊢ ( 𝐷 Faith 𝐷 ) = ( 𝐷 Faith ( 𝐶 ↾cat 𝐽 ) ) |
| 4 | fthres2 | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐷 Faith ( 𝐶 ↾cat 𝐽 ) ) ⊆ ( 𝐷 Faith 𝐶 ) ) | |
| 5 | 3 4 | eqsstrid | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐷 Faith 𝐷 ) ⊆ ( 𝐷 Faith 𝐶 ) ) |
| 6 | id | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 7 | 1 6 | subccat | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐷 ∈ Cat ) |
| 8 | 2 | idffth | ⊢ ( 𝐷 ∈ Cat → 𝐼 ∈ ( ( 𝐷 Full 𝐷 ) ∩ ( 𝐷 Faith 𝐷 ) ) ) |
| 9 | 7 8 | syl | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( ( 𝐷 Full 𝐷 ) ∩ ( 𝐷 Faith 𝐷 ) ) ) |
| 10 | 9 | elin2d | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( 𝐷 Faith 𝐷 ) ) |
| 11 | 5 10 | sseldd | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( 𝐷 Faith 𝐶 ) ) |