This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A faithful functor into a restricted category is also a faithful functor into the whole category. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fthres2 | |- ( R e. ( Subcat ` D ) -> ( C Faith ( D |`cat R ) ) C_ ( C Faith D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfth | |- Rel ( C Faith ( D |`cat R ) ) |
|
| 2 | 1 | a1i | |- ( R e. ( Subcat ` D ) -> Rel ( C Faith ( D |`cat R ) ) ) |
| 3 | funcres2 | |- ( R e. ( Subcat ` D ) -> ( C Func ( D |`cat R ) ) C_ ( C Func D ) ) |
|
| 4 | 3 | ssbrd | |- ( R e. ( Subcat ` D ) -> ( f ( C Func ( D |`cat R ) ) g -> f ( C Func D ) g ) ) |
| 5 | 4 | anim1d | |- ( R e. ( Subcat ` D ) -> ( ( f ( C Func ( D |`cat R ) ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) -> ( f ( C Func D ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) ) ) |
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | 6 | isfth | |- ( f ( C Faith ( D |`cat R ) ) g <-> ( f ( C Func ( D |`cat R ) ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) ) |
| 8 | 6 | isfth | |- ( f ( C Faith D ) g <-> ( f ( C Func D ) g /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x g y ) ) ) |
| 9 | 5 7 8 | 3imtr4g | |- ( R e. ( Subcat ` D ) -> ( f ( C Faith ( D |`cat R ) ) g -> f ( C Faith D ) g ) ) |
| 10 | df-br | |- ( f ( C Faith ( D |`cat R ) ) g <-> <. f , g >. e. ( C Faith ( D |`cat R ) ) ) |
|
| 11 | df-br | |- ( f ( C Faith D ) g <-> <. f , g >. e. ( C Faith D ) ) |
|
| 12 | 9 10 11 | 3imtr3g | |- ( R e. ( Subcat ` D ) -> ( <. f , g >. e. ( C Faith ( D |`cat R ) ) -> <. f , g >. e. ( C Faith D ) ) ) |
| 13 | 2 12 | relssdv | |- ( R e. ( Subcat ` D ) -> ( C Faith ( D |`cat R ) ) C_ ( C Faith D ) ) |