This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idffth.i | |- I = ( idFunc ` C ) |
|
| Assertion | idffth | |- ( C e. Cat -> I e. ( ( C Full C ) i^i ( C Faith C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idffth.i | |- I = ( idFunc ` C ) |
|
| 2 | relfunc | |- Rel ( C Func C ) |
|
| 3 | 1 | idfucl | |- ( C e. Cat -> I e. ( C Func C ) ) |
| 4 | 1st2nd | |- ( ( Rel ( C Func C ) /\ I e. ( C Func C ) ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
|
| 5 | 2 3 4 | sylancr | |- ( C e. Cat -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
| 6 | 5 3 | eqeltrrd | |- ( C e. Cat -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( C Func C ) ) |
| 7 | df-br | |- ( ( 1st ` I ) ( C Func C ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( C Func C ) ) |
|
| 8 | 6 7 | sylibr | |- ( C e. Cat -> ( 1st ` I ) ( C Func C ) ( 2nd ` I ) ) |
| 9 | f1oi | |- ( _I |` ( x ( Hom ` C ) y ) ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( x ( Hom ` C ) y ) |
|
| 10 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 11 | simpl | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. Cat ) |
|
| 12 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 13 | simprl | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 14 | simprr | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 15 | 1 10 11 12 13 14 | idfu2nd | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` I ) y ) = ( _I |` ( x ( Hom ` C ) y ) ) ) |
| 16 | eqidd | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` C ) y ) ) |
|
| 17 | 1 10 11 13 | idfu1 | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` I ) ` x ) = x ) |
| 18 | 1 10 11 14 | idfu1 | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` I ) ` y ) = y ) |
| 19 | 17 18 | oveq12d | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) = ( x ( Hom ` C ) y ) ) |
| 20 | 15 16 19 | f1oeq123d | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x ( 2nd ` I ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) <-> ( _I |` ( x ( Hom ` C ) y ) ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( x ( Hom ` C ) y ) ) ) |
| 21 | 9 20 | mpbiri | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` I ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) |
| 22 | 21 | ralrimivva | |- ( C e. Cat -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) |
| 23 | 10 12 12 | isffth2 | |- ( ( 1st ` I ) ( ( C Full C ) i^i ( C Faith C ) ) ( 2nd ` I ) <-> ( ( 1st ` I ) ( C Func C ) ( 2nd ` I ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) ) |
| 24 | 8 22 23 | sylanbrc | |- ( C e. Cat -> ( 1st ` I ) ( ( C Full C ) i^i ( C Faith C ) ) ( 2nd ` I ) ) |
| 25 | df-br | |- ( ( 1st ` I ) ( ( C Full C ) i^i ( C Faith C ) ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( C Full C ) i^i ( C Faith C ) ) ) |
|
| 26 | 24 25 | sylib | |- ( C e. Cat -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( C Full C ) i^i ( C Faith C ) ) ) |
| 27 | 5 26 | eqeltrd | |- ( C e. Cat -> I e. ( ( C Full C ) i^i ( C Faith C ) ) ) |