This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum metric on RR ^ I is a metric. (Contributed by Jeff Madsen, 15-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrnequiv.y | |- Y = ( ( CCfld |`s RR ) ^s I ) |
|
| rrnequiv.d | |- D = ( dist ` Y ) |
||
| rrnequiv.1 | |- X = ( RR ^m I ) |
||
| Assertion | repwsmet | |- ( I e. Fin -> D e. ( Met ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnequiv.y | |- Y = ( ( CCfld |`s RR ) ^s I ) |
|
| 2 | rrnequiv.d | |- D = ( dist ` Y ) |
|
| 3 | rrnequiv.1 | |- X = ( RR ^m I ) |
|
| 4 | fconstmpt | |- ( I X. { ( CCfld |`s RR ) } ) = ( k e. I |-> ( CCfld |`s RR ) ) |
|
| 5 | 4 | oveq2i | |- ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) = ( ( Scalar ` CCfld ) Xs_ ( k e. I |-> ( CCfld |`s RR ) ) ) |
| 6 | eqid | |- ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
|
| 7 | ax-resscn | |- RR C_ CC |
|
| 8 | eqid | |- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
|
| 9 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 10 | 8 9 | ressbas2 | |- ( RR C_ CC -> RR = ( Base ` ( CCfld |`s RR ) ) ) |
| 11 | 7 10 | ax-mp | |- RR = ( Base ` ( CCfld |`s RR ) ) |
| 12 | reex | |- RR e. _V |
|
| 13 | cnfldds | |- ( abs o. - ) = ( dist ` CCfld ) |
|
| 14 | 8 13 | ressds | |- ( RR e. _V -> ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) ) |
| 15 | 12 14 | ax-mp | |- ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) |
| 16 | 15 | reseq1i | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( dist ` ( CCfld |`s RR ) ) |` ( RR X. RR ) ) |
| 17 | eqid | |- ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
|
| 18 | fvexd | |- ( I e. Fin -> ( Scalar ` CCfld ) e. _V ) |
|
| 19 | id | |- ( I e. Fin -> I e. Fin ) |
|
| 20 | ovex | |- ( CCfld |`s RR ) e. _V |
|
| 21 | 20 | a1i | |- ( ( I e. Fin /\ k e. I ) -> ( CCfld |`s RR ) e. _V ) |
| 22 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 23 | 22 | remet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) |
| 24 | 23 | a1i | |- ( ( I e. Fin /\ k e. I ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) ) |
| 25 | 5 6 11 16 17 18 19 21 24 | prdsmet | |- ( I e. Fin -> ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) e. ( Met ` ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) ) |
| 26 | eqid | |- ( Scalar ` CCfld ) = ( Scalar ` CCfld ) |
|
| 27 | 8 26 | resssca | |- ( RR e. _V -> ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) ) |
| 28 | 12 27 | ax-mp | |- ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) |
| 29 | 1 28 | pwsval | |- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 30 | 20 29 | mpan | |- ( I e. Fin -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 31 | 30 | fveq2d | |- ( I e. Fin -> ( dist ` Y ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 32 | 2 31 | eqtrid | |- ( I e. Fin -> D = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 33 | 1 11 | pwsbas | |- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> ( RR ^m I ) = ( Base ` Y ) ) |
| 34 | 20 33 | mpan | |- ( I e. Fin -> ( RR ^m I ) = ( Base ` Y ) ) |
| 35 | 30 | fveq2d | |- ( I e. Fin -> ( Base ` Y ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 36 | 34 35 | eqtrd | |- ( I e. Fin -> ( RR ^m I ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 37 | 3 36 | eqtrid | |- ( I e. Fin -> X = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 38 | 37 | fveq2d | |- ( I e. Fin -> ( Met ` X ) = ( Met ` ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) ) |
| 39 | 25 32 38 | 3eltr4d | |- ( I e. Fin -> D e. ( Met ` X ) ) |