This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relresdm1 | |- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A u. B ) |` dom A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir | |- ( ( A u. B ) |` dom A ) = ( ( A |` dom A ) u. ( B |` dom A ) ) |
|
| 2 | resdm | |- ( Rel A -> ( A |` dom A ) = A ) |
|
| 3 | 2 | adantr | |- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( A |` dom A ) = A ) |
| 4 | dmres | |- dom ( B |` dom A ) = ( dom A i^i dom B ) |
|
| 5 | simpr | |- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( dom A i^i dom B ) = (/) ) |
|
| 6 | 4 5 | eqtrid | |- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> dom ( B |` dom A ) = (/) ) |
| 7 | relres | |- Rel ( B |` dom A ) |
|
| 8 | reldm0 | |- ( Rel ( B |` dom A ) -> ( ( B |` dom A ) = (/) <-> dom ( B |` dom A ) = (/) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( B |` dom A ) = (/) <-> dom ( B |` dom A ) = (/) ) |
| 10 | 6 9 | sylibr | |- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( B |` dom A ) = (/) ) |
| 11 | 3 10 | uneq12d | |- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A |` dom A ) u. ( B |` dom A ) ) = ( A u. (/) ) ) |
| 12 | un0 | |- ( A u. (/) ) = A |
|
| 13 | 11 12 | eqtrdi | |- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A |` dom A ) u. ( B |` dom A ) ) = A ) |
| 14 | 1 13 | eqtrid | |- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A u. B ) |` dom A ) = A ) |