This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relresdm1 | ⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) ↾ dom 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ↾ dom 𝐴 ) = ( ( 𝐴 ↾ dom 𝐴 ) ∪ ( 𝐵 ↾ dom 𝐴 ) ) | |
| 2 | resdm | ⊢ ( Rel 𝐴 → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 ) | |
| 3 | 2 | adantr | ⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 ) |
| 4 | dmres | ⊢ dom ( 𝐵 ↾ dom 𝐴 ) = ( dom 𝐴 ∩ dom 𝐵 ) | |
| 5 | simpr | ⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) | |
| 6 | 4 5 | eqtrid | ⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → dom ( 𝐵 ↾ dom 𝐴 ) = ∅ ) |
| 7 | relres | ⊢ Rel ( 𝐵 ↾ dom 𝐴 ) | |
| 8 | reldm0 | ⊢ ( Rel ( 𝐵 ↾ dom 𝐴 ) → ( ( 𝐵 ↾ dom 𝐴 ) = ∅ ↔ dom ( 𝐵 ↾ dom 𝐴 ) = ∅ ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( 𝐵 ↾ dom 𝐴 ) = ∅ ↔ dom ( 𝐵 ↾ dom 𝐴 ) = ∅ ) |
| 10 | 6 9 | sylibr | ⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( 𝐵 ↾ dom 𝐴 ) = ∅ ) |
| 11 | 3 10 | uneq12d | ⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( ( 𝐴 ↾ dom 𝐴 ) ∪ ( 𝐵 ↾ dom 𝐴 ) ) = ( 𝐴 ∪ ∅ ) ) |
| 12 | un0 | ⊢ ( 𝐴 ∪ ∅ ) = 𝐴 | |
| 13 | 11 12 | eqtrdi | ⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( ( 𝐴 ↾ dom 𝐴 ) ∪ ( 𝐵 ↾ dom 𝐴 ) ) = 𝐴 ) |
| 14 | 1 13 | eqtrid | ⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∩ dom 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) ↾ dom 𝐴 ) = 𝐴 ) |