This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resopab | |- ( { <. x , y >. | ph } |` A ) = { <. x , y >. | ( x e. A /\ ph ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( { <. x , y >. | ph } |` A ) = ( { <. x , y >. | ph } i^i ( A X. _V ) ) |
|
| 2 | df-xp | |- ( A X. _V ) = { <. x , y >. | ( x e. A /\ y e. _V ) } |
|
| 3 | vex | |- y e. _V |
|
| 4 | 3 | biantru | |- ( x e. A <-> ( x e. A /\ y e. _V ) ) |
| 5 | 4 | opabbii | |- { <. x , y >. | x e. A } = { <. x , y >. | ( x e. A /\ y e. _V ) } |
| 6 | 2 5 | eqtr4i | |- ( A X. _V ) = { <. x , y >. | x e. A } |
| 7 | 6 | ineq2i | |- ( { <. x , y >. | ph } i^i ( A X. _V ) ) = ( { <. x , y >. | ph } i^i { <. x , y >. | x e. A } ) |
| 8 | incom | |- ( { <. x , y >. | ph } i^i { <. x , y >. | x e. A } ) = ( { <. x , y >. | x e. A } i^i { <. x , y >. | ph } ) |
|
| 9 | 7 8 | eqtri | |- ( { <. x , y >. | ph } i^i ( A X. _V ) ) = ( { <. x , y >. | x e. A } i^i { <. x , y >. | ph } ) |
| 10 | inopab | |- ( { <. x , y >. | x e. A } i^i { <. x , y >. | ph } ) = { <. x , y >. | ( x e. A /\ ph ) } |
|
| 11 | 9 10 | eqtri | |- ( { <. x , y >. | ph } i^i ( A X. _V ) ) = { <. x , y >. | ( x e. A /\ ph ) } |
| 12 | 1 11 | eqtri | |- ( { <. x , y >. | ph } |` A ) = { <. x , y >. | ( x e. A /\ ph ) } |