This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unielrel | |- ( ( Rel R /\ A e. R ) -> U. A e. U. R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrel | |- ( ( Rel R /\ A e. R ) -> E. x E. y A = <. x , y >. ) |
|
| 2 | simpr | |- ( ( Rel R /\ A e. R ) -> A e. R ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- y e. _V |
|
| 5 | 3 4 | uniopel | |- ( <. x , y >. e. R -> U. <. x , y >. e. U. R ) |
| 6 | 5 | a1i | |- ( A = <. x , y >. -> ( <. x , y >. e. R -> U. <. x , y >. e. U. R ) ) |
| 7 | eleq1 | |- ( A = <. x , y >. -> ( A e. R <-> <. x , y >. e. R ) ) |
|
| 8 | unieq | |- ( A = <. x , y >. -> U. A = U. <. x , y >. ) |
|
| 9 | 8 | eleq1d | |- ( A = <. x , y >. -> ( U. A e. U. R <-> U. <. x , y >. e. U. R ) ) |
| 10 | 6 7 9 | 3imtr4d | |- ( A = <. x , y >. -> ( A e. R -> U. A e. U. R ) ) |
| 11 | 10 | exlimivv | |- ( E. x E. y A = <. x , y >. -> ( A e. R -> U. A e. U. R ) ) |
| 12 | 1 2 11 | sylc | |- ( ( Rel R /\ A e. R ) -> U. A e. U. R ) |