This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnveq2 | |- ( Rel R -> ( `' R = R <-> A. x A. y ( x R y <-> y R x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsym | |- ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) ) |
|
| 2 | 1 | a1i | |- ( Rel R -> ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) ) ) |
| 3 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 4 | 3 | biimpi | |- ( Rel R -> `' `' R = R ) |
| 5 | 4 | sseq1d | |- ( Rel R -> ( `' `' R C_ `' R <-> R C_ `' R ) ) |
| 6 | cnvsym | |- ( `' `' R C_ `' R <-> A. x A. y ( x `' R y -> y `' R x ) ) |
|
| 7 | 5 6 | bitr3di | |- ( Rel R -> ( R C_ `' R <-> A. x A. y ( x `' R y -> y `' R x ) ) ) |
| 8 | relbrcnvg | |- ( Rel R -> ( x `' R y <-> y R x ) ) |
|
| 9 | relbrcnvg | |- ( Rel R -> ( y `' R x <-> x R y ) ) |
|
| 10 | 8 9 | imbi12d | |- ( Rel R -> ( ( x `' R y -> y `' R x ) <-> ( y R x -> x R y ) ) ) |
| 11 | 10 | 2albidv | |- ( Rel R -> ( A. x A. y ( x `' R y -> y `' R x ) <-> A. x A. y ( y R x -> x R y ) ) ) |
| 12 | 7 11 | bitrd | |- ( Rel R -> ( R C_ `' R <-> A. x A. y ( y R x -> x R y ) ) ) |
| 13 | 2 12 | anbi12d | |- ( Rel R -> ( ( `' R C_ R /\ R C_ `' R ) <-> ( A. x A. y ( x R y -> y R x ) /\ A. x A. y ( y R x -> x R y ) ) ) ) |
| 14 | eqss | |- ( `' R = R <-> ( `' R C_ R /\ R C_ `' R ) ) |
|
| 15 | 2albiim | |- ( A. x A. y ( x R y <-> y R x ) <-> ( A. x A. y ( x R y -> y R x ) /\ A. x A. y ( y R x -> x R y ) ) ) |
|
| 16 | 13 14 15 | 3bitr4g | |- ( Rel R -> ( `' R = R <-> A. x A. y ( x R y <-> y R x ) ) ) |