This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnveq2 | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 = 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsym | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) | |
| 2 | 1 | a1i | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 3 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 4 | 3 | biimpi | ⊢ ( Rel 𝑅 → ◡ ◡ 𝑅 = 𝑅 ) |
| 5 | 4 | sseq1d | ⊢ ( Rel 𝑅 → ( ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ↔ 𝑅 ⊆ ◡ 𝑅 ) ) |
| 6 | cnvsym | ⊢ ( ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ) | |
| 7 | 5 6 | bitr3di | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ) ) |
| 8 | relbrcnvg | ⊢ ( Rel 𝑅 → ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) | |
| 9 | relbrcnvg | ⊢ ( Rel 𝑅 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 10 | 8 9 | imbi12d | ⊢ ( Rel 𝑅 → ( ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ↔ ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 11 | 10 | 2albidv | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 12 | 7 11 | bitrd | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 13 | 2 12 | anbi12d | ⊢ ( Rel 𝑅 → ( ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡ 𝑅 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) ) |
| 14 | eqss | ⊢ ( ◡ 𝑅 = 𝑅 ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡ 𝑅 ) ) | |
| 15 | 2albiim | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) | |
| 16 | 13 14 15 | 3bitr4g | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 = 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |