This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When R is a relation, the sethood assumptions on brcnv can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relbrcnvg | |- ( Rel R -> ( A `' R B <-> B R A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' R |
|
| 2 | 1 | brrelex12i | |- ( A `' R B -> ( A e. _V /\ B e. _V ) ) |
| 3 | 2 | a1i | |- ( Rel R -> ( A `' R B -> ( A e. _V /\ B e. _V ) ) ) |
| 4 | brrelex12 | |- ( ( Rel R /\ B R A ) -> ( B e. _V /\ A e. _V ) ) |
|
| 5 | 4 | ancomd | |- ( ( Rel R /\ B R A ) -> ( A e. _V /\ B e. _V ) ) |
| 6 | 5 | ex | |- ( Rel R -> ( B R A -> ( A e. _V /\ B e. _V ) ) ) |
| 7 | brcnvg | |- ( ( A e. _V /\ B e. _V ) -> ( A `' R B <-> B R A ) ) |
|
| 8 | 7 | a1i | |- ( Rel R -> ( ( A e. _V /\ B e. _V ) -> ( A `' R B <-> B R A ) ) ) |
| 9 | 3 6 8 | pm5.21ndd | |- ( Rel R -> ( A `' R B <-> B R A ) ) |