This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymrels2 | |- SymRels = { r e. Rels | `' r C_ r } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symrels | |- SymRels = ( Syms i^i Rels ) |
|
| 2 | df-syms | |- Syms = { r | `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) } |
|
| 3 | inex1g | |- ( r e. _V -> ( r i^i ( dom r X. ran r ) ) e. _V ) |
|
| 4 | 3 | elv | |- ( r i^i ( dom r X. ran r ) ) e. _V |
| 5 | brssr | |- ( ( r i^i ( dom r X. ran r ) ) e. _V -> ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) ) |
| 7 | elrels6 | |- ( r e. _V -> ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) ) |
|
| 8 | 7 | elv | |- ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) |
| 9 | 8 | biimpi | |- ( r e. Rels -> ( r i^i ( dom r X. ran r ) ) = r ) |
| 10 | 9 | cnveqd | |- ( r e. Rels -> `' ( r i^i ( dom r X. ran r ) ) = `' r ) |
| 11 | 10 9 | sseq12d | |- ( r e. Rels -> ( `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) <-> `' r C_ r ) ) |
| 12 | 6 11 | bitrid | |- ( r e. Rels -> ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' r C_ r ) ) |
| 13 | 1 2 12 | abeqinbi | |- SymRels = { r e. Rels | `' r C_ r } |