This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeqvrels2 | |- EqvRels = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrels | |- EqvRels = ( ( RefRels i^i SymRels ) i^i TrRels ) |
|
| 2 | refsymrels2 | |- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
|
| 3 | dftrrels2 | |- TrRels = { r e. Rels | ( r o. r ) C_ r } |
|
| 4 | 2 3 | ineq12i | |- ( ( RefRels i^i SymRels ) i^i TrRels ) = ( { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } i^i { r e. Rels | ( r o. r ) C_ r } ) |
| 5 | inrab | |- ( { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } i^i { r e. Rels | ( r o. r ) C_ r } ) = { r e. Rels | ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) /\ ( r o. r ) C_ r ) } |
|
| 6 | 1 4 5 | 3eqtri | |- EqvRels = { r e. Rels | ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) /\ ( r o. r ) C_ r ) } |
| 7 | df-3an | |- ( ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) <-> ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) /\ ( r o. r ) C_ r ) ) |
|
| 8 | 7 | rabbii | |- { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) } = { r e. Rels | ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) /\ ( r o. r ) C_ r ) } |
| 9 | 6 8 | eqtr4i | |- EqvRels = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) } |