This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive, see also refrelressn . (Contributed by Peter Mazsa, 12-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refressn | |- ( A e. V -> A. x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) x ( R |` { A } ) x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) <-> ( x e. dom ( R |` { A } ) /\ x e. ran ( R |` { A } ) ) ) |
|
| 2 | eldmressnALTV | |- ( x e. _V -> ( x e. dom ( R |` { A } ) <-> ( x = A /\ A e. dom R ) ) ) |
|
| 3 | 2 | elv | |- ( x e. dom ( R |` { A } ) <-> ( x = A /\ A e. dom R ) ) |
| 4 | 3 | simplbi | |- ( x e. dom ( R |` { A } ) -> x = A ) |
| 5 | 4 | adantr | |- ( ( x e. dom ( R |` { A } ) /\ x e. ran ( R |` { A } ) ) -> x = A ) |
| 6 | 1 5 | sylbi | |- ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> x = A ) |
| 7 | 6 | a1i | |- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> x = A ) ) |
| 8 | elrnressn | |- ( ( A e. V /\ x e. _V ) -> ( x e. ran ( R |` { A } ) <-> A R x ) ) |
|
| 9 | 8 | elvd | |- ( A e. V -> ( x e. ran ( R |` { A } ) <-> A R x ) ) |
| 10 | 9 | biimpd | |- ( A e. V -> ( x e. ran ( R |` { A } ) -> A R x ) ) |
| 11 | 10 | adantld | |- ( A e. V -> ( ( x e. dom ( R |` { A } ) /\ x e. ran ( R |` { A } ) ) -> A R x ) ) |
| 12 | 1 11 | biimtrid | |- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> A R x ) ) |
| 13 | 4 | eqcomd | |- ( x e. dom ( R |` { A } ) -> A = x ) |
| 14 | 13 | breq1d | |- ( x e. dom ( R |` { A } ) -> ( A R x <-> x R x ) ) |
| 15 | 14 | adantr | |- ( ( x e. dom ( R |` { A } ) /\ x e. ran ( R |` { A } ) ) -> ( A R x <-> x R x ) ) |
| 16 | 1 15 | sylbi | |- ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> ( A R x <-> x R x ) ) |
| 17 | 12 16 | mpbidi | |- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> x R x ) ) |
| 18 | 7 17 | jcad | |- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> ( x = A /\ x R x ) ) ) |
| 19 | brressn | |- ( ( x e. _V /\ x e. _V ) -> ( x ( R |` { A } ) x <-> ( x = A /\ x R x ) ) ) |
|
| 20 | 19 | el2v | |- ( x ( R |` { A } ) x <-> ( x = A /\ x R x ) ) |
| 21 | 18 20 | imbitrrdi | |- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> x ( R |` { A } ) x ) ) |
| 22 | 21 | ralrimiv | |- ( A e. V -> A. x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) x ( R |` { A } ) x ) |