This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | antisymressn | |- A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brressn | |- ( ( x e. _V /\ y e. _V ) -> ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) ) |
|
| 2 | 1 | el2v | |- ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) |
| 3 | 2 | simplbi | |- ( x ( R |` { A } ) y -> x = A ) |
| 4 | brressn | |- ( ( y e. _V /\ x e. _V ) -> ( y ( R |` { A } ) x <-> ( y = A /\ y R x ) ) ) |
|
| 5 | 4 | el2v | |- ( y ( R |` { A } ) x <-> ( y = A /\ y R x ) ) |
| 6 | 5 | simplbi | |- ( y ( R |` { A } ) x -> y = A ) |
| 7 | eqtr3 | |- ( ( x = A /\ y = A ) -> x = y ) |
|
| 8 | 3 6 7 | syl2an | |- ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) |
| 9 | 8 | gen2 | |- A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) |