This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive, see also refrelressn . (Contributed by Peter Mazsa, 12-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refressn | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) ↔ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) ) | |
| 2 | eldmressnALTV | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) |
| 4 | 3 | simplbi | ⊢ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → 𝑥 = 𝐴 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) |
| 6 | 1 5 | sylbi | ⊢ ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) ) |
| 8 | elrnressn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝑥 ) ) | |
| 9 | 8 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝑥 ) ) |
| 10 | 9 | biimpd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) → 𝐴 𝑅 𝑥 ) ) |
| 11 | 10 | adantld | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝐴 𝑅 𝑥 ) ) |
| 12 | 1 11 | biimtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝐴 𝑅 𝑥 ) ) |
| 13 | 4 | eqcomd | ⊢ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → 𝐴 = 𝑥 ) |
| 14 | 13 | breq1d | ⊢ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → ( 𝐴 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝐴 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
| 16 | 1 15 | sylbi | ⊢ ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝐴 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
| 17 | 12 16 | mpbidi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 𝑅 𝑥 ) ) |
| 18 | 7 17 | jcad | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) ) |
| 19 | brressn | ⊢ ( ( 𝑥 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) ) | |
| 20 | 19 | el2v | ⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) |
| 21 | 18 20 | imbitrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) ) |
| 22 | 21 | ralrimiv | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) |