This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reexplog | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) = ( exp ` ( N x. ( log ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 3 | efexp | |- ( ( ( log ` A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
|
| 4 | 2 3 | sylan | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
| 5 | reeflog | |- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
|
| 6 | 5 | oveq1d | |- ( A e. RR+ -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
| 7 | 6 | adantr | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
| 8 | 4 7 | eqtr2d | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) = ( exp ` ( N x. ( log ` A ) ) ) ) |