This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The initial segments of the recursive definition generator are sets. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgseg | |- ( B e. dom rec ( F , A ) -> ( rec ( F , A ) |` B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rdg | |- rec ( F , A ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
|
| 2 | 1 | reseq1i | |- ( rec ( F , A ) |` B ) = ( recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |` B ) |
| 3 | rdglem1 | |- { w | E. y e. On ( w Fn y /\ A. v e. y ( w ` v ) = ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` ( w |` v ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` ( f |` y ) ) ) } |
|
| 4 | 3 | tfrlem9a | |- ( B e. dom recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) -> ( recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |` B ) e. _V ) |
| 5 | 1 | dmeqi | |- dom rec ( F , A ) = dom recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
| 6 | 4 5 | eleq2s | |- ( B e. dom rec ( F , A ) -> ( recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |` B ) e. _V ) |
| 7 | 2 6 | eqeltrid | |- ( B e. dom rec ( F , A ) -> ( rec ( F , A ) |` B ) e. _V ) |