This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdglem1 | |- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( G ` ( g |` w ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } |
|
| 2 | 1 | tfrlem3 | |- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { g | E. z e. On ( g Fn z /\ A. v e. z ( g ` v ) = ( G ` ( g |` v ) ) ) } |
| 3 | fveq2 | |- ( v = w -> ( g ` v ) = ( g ` w ) ) |
|
| 4 | reseq2 | |- ( v = w -> ( g |` v ) = ( g |` w ) ) |
|
| 5 | 4 | fveq2d | |- ( v = w -> ( G ` ( g |` v ) ) = ( G ` ( g |` w ) ) ) |
| 6 | 3 5 | eqeq12d | |- ( v = w -> ( ( g ` v ) = ( G ` ( g |` v ) ) <-> ( g ` w ) = ( G ` ( g |` w ) ) ) ) |
| 7 | 6 | cbvralvw | |- ( A. v e. z ( g ` v ) = ( G ` ( g |` v ) ) <-> A. w e. z ( g ` w ) = ( G ` ( g |` w ) ) ) |
| 8 | 7 | anbi2i | |- ( ( g Fn z /\ A. v e. z ( g ` v ) = ( G ` ( g |` v ) ) ) <-> ( g Fn z /\ A. w e. z ( g ` w ) = ( G ` ( g |` w ) ) ) ) |
| 9 | 8 | rexbii | |- ( E. z e. On ( g Fn z /\ A. v e. z ( g ` v ) = ( G ` ( g |` v ) ) ) <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( G ` ( g |` w ) ) ) ) |
| 10 | 9 | abbii | |- { g | E. z e. On ( g Fn z /\ A. v e. z ( g ` v ) = ( G ` ( g |` v ) ) ) } = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( G ` ( g |` w ) ) ) } |
| 11 | 2 10 | eqtri | |- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( G ` ( g |` w ) ) ) } |