This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). This variant of rankval expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankvalg | |- ( A e. V -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( y = A -> ( rank ` y ) = ( rank ` A ) ) |
|
| 2 | eleq1 | |- ( y = A -> ( y e. ( R1 ` suc x ) <-> A e. ( R1 ` suc x ) ) ) |
|
| 3 | 2 | rabbidv | |- ( y = A -> { x e. On | y e. ( R1 ` suc x ) } = { x e. On | A e. ( R1 ` suc x ) } ) |
| 4 | 3 | inteqd | |- ( y = A -> |^| { x e. On | y e. ( R1 ` suc x ) } = |^| { x e. On | A e. ( R1 ` suc x ) } ) |
| 5 | 1 4 | eqeq12d | |- ( y = A -> ( ( rank ` y ) = |^| { x e. On | y e. ( R1 ` suc x ) } <-> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) ) |
| 6 | vex | |- y e. _V |
|
| 7 | 6 | rankval | |- ( rank ` y ) = |^| { x e. On | y e. ( R1 ` suc x ) } |
| 8 | 5 7 | vtoclg | |- ( A e. V -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) |